

CTC isolation & analysis in an integrated microsystem

Chengxun Liu imec

Chengxun.liu@imec.be

Challenges for CTC isolation

General

- Low abundance: down to I CTC/mL among billions of normal cells
- CTCs are probably heterogeneous within one patient, and among patient subgroups

Cellular level

 Size/morphological overlap between CTC and normal cells

Molecular level

- No generally present carcinoma-specific markers are identified
- Normal blood cells may express similar markers (e.g. EpCAM)

When microtechnology meets bio : size matters!

The consortium

- **Project number**: 257743
- **Project duration**: 01.09.2010 31.08.2014
- Total cost: 10 million euro
- **Project coordinator**: Prof. Liesbet Lagae (imec)

© IMEC 2013

300 nm beads for immunomagnetic cell isolations

© IMEC 2013

Isolating individual viable CTCs?

- How to identify CTCs?
- How to isolate CTCS from WBCs?

© IMEC 2013

An active micro sieve for CTC isolation

Active sieve = a transistor chip with through-silicon pores

- CTC identification by electrical impedance measurement (EIS)
- CTC positioning by dielectrophoresis (DEP)
- Electrical CTC lysis (US20120064567 A1)

An active micro sieve for CTC isolation

- 10,000 single cell measurement pores
- On-chip microfluidic structure
- Front-end:TSMC 0.18 µm (Taiwan)
- Back-end & packaging: imec

Chip layout

© IMEC 2013

Cell positioning by dielectrophoresis

Cell manipulation by DEP

- Position the cell close enough to the EIS electrode (in-plane)
- Reduce the cell-electrode gap (out-of-plane)
- Cell lysis after identification

Electrical cell positioning and lysis

Tumor cell capture & WBC repulsion by DEP

Calcein / esterase leaked out after cell lyzed by electric pulses

© IMEC 2013

Cell impedance measurement

- Different CTC membrane impedance for from normal blood cells
- Cell membrane impedance dominates the middle frequency range [IKHz, I MHz]
- Very tight cell-electrode contact is required to ensure high seal resistance (R_{seal})

Cell membrane capacitance

- Cell membrane capacitance characterized by DEP measurements. Min. 50 individual cells measured for every cell line. Cell size measured and normalized.
- Tumor cells exhibit higher membrane capacitance than normal blood cells. → Cell capacitance can be a good measurement for TC, or CTC, identification from WBCs!

© IMEC 2013

Multiplex ligation-dependent probe amplification (MLPA)

The full MIRACLE MLPA gene panels

Breast cancer (30 genes)

AKT2	mTOR
ALDHIAI	MUCI
BMH	MYC
CD24	PGR
CD44	PIK3CA
CDHI	PLAUR
CDH2	PROMI
CEACAM3	PTEN
EGFR	PTPRC
ERBB2	TACSTDI
ESR I	TERT
FNI	TOP2A
HUEWI	TWISTI
KRT19	VEGFA
MKI67	VIM

Prostate cancer (16 genes)

ALDHI AMACR AR EGFT **EPCAM** ERBB2 FOLHI (PSMA) **KLKBI** KRT19 LDHA PCA3 PTPRC TMPRSS2-ERGb TMPRSS2-ETVIb HUWEI OAZI

(Core gene panel for initial testing)

MLPA sensitivity

© IMEC 2013

MLPA sensitivity

MLPA product lengths: 115-170 bp

© IMEC 2013

MLPA for TCs spiked in WBC

- MLPA product lengths: 115-170bp
- 20 TC for every sample
- Still pretty high TC specific signal at 800:1.

© IMEC 2013

MLPA product lengths: 115-170 bp

MLPA robustness to **RNA** sample degradation

Automated gene amplification & detection model

© IMEC 2013

Automated gene amplification & detection model

Automated gene amplification & detection model

© IMEC 2013

Principle of DNA detection

- Electrochemical DNA detection with enzymatic redox labels
 - Well known working principle
 - Good balance between sensitivity, specificity & reliability for PCR amplicons
 - Electrical readout = multiplexing, compact, fast, cheap

Probe immobilization

DNA hybridization HRP labeling and detection

© IMEC 2013

Challenges for multiplex DNA detection

- The redox product can diffuse between electrodes
 - HRP label & substrate optimized for reaction-limited kinetics rather than diffusion-limited
 - Optimal electrode design against molecule diffusion
 - Low-noise readout allowing rapid measurement before diffusion occurs
 - MIRACLE: 0.5 seconds for all 64 electrodes
 - Autolab[®]: several minutes

DNA sensor chips

The packaged sensor chip (before fluidic integration)

The 64 electrode sensor chip

Made of standard printed circuit board (PCB) technology, modified with IC-level gold finishing.

© IMEC 2013

Multi-gene detection for single cell MLPA amplicons

- Wide dynamic range for single cell amplicon sensing
- Individual MLPA products prepared from single MCF7 cell
- Similar sensitivity & specificity as commercial instrument with much shorter signal integration time

© IMEC 2013

Conclusions

Acknowledgements

http://www.miracle-fp7.eu

© IMEC 2013

